Index: Guidance to NASA Research Funding Charts

<table>
<thead>
<tr>
<th>Chart #s</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 5</td>
<td>NASA Overview</td>
</tr>
<tr>
<td>6 - 17</td>
<td>Science Mission Directorate</td>
</tr>
<tr>
<td>7 - 16</td>
<td>Divisions and ROSES Research Announcement</td>
</tr>
<tr>
<td>17</td>
<td>Salmon Research Announcement</td>
</tr>
<tr>
<td>18 - 21</td>
<td>Aeronautics Research Mission Directorate</td>
</tr>
<tr>
<td>22 - 25</td>
<td>Human Exploration and Operations Systems Mission Directorate</td>
</tr>
<tr>
<td>26 - 31</td>
<td>Space Technology Mission Directorate</td>
</tr>
<tr>
<td>32</td>
<td>Office of the Chief Technologist</td>
</tr>
<tr>
<td>33</td>
<td>NASA Centers</td>
</tr>
<tr>
<td>34</td>
<td>NASA University (Minority Institutions) Research Centers</td>
</tr>
</tbody>
</table>

Updated May 2014
The DC Office of Research Advancement has created the Federal Mission Agency Program Summaries (MAPS) website to:

1. Connect PIs with appropriate funding agency programs/program officers
2. Assist in development of white papers/charts/elevator pitches

The website can be accessed using one’s USC NetID and Password.

It has the following resources:

1. **Search Tab** for a searchable database of programs/program officers
 At that website one can do keyword searches to locate the associated mission agency (DHS, DOD, DOE, DOT, ED, EPA, INTEL, NASA, NIST, NOAA and USDA) programs and program officers.

2. **Mission Agency Tab** (DHS, DHHS, DOD, DOJ, DOE, DOT, ED, EPA, INTEL, NASA, NIST, NOAA, USDA)
 - Guide to Agency Funding for FYXX
 - Agency Research Program Charts
 - Agency Planning Documents
 - Chart numbers in the text above reference the Agency Research Program Chart files.

3. **Presentation Tab** for charts from recent USC Center of Excellence in Research workshops

4. **Proposal Tab** for report / guides on writing proposals

5. **Email Alerts Tab** for URLs at which one can arrange for automatic solicitation updates

6. **Grantee Tab** for URLs at which one can find previous agency awardees

7. **Visiting DC Tab** for information about DC Office services
NASA Research Opportunities - Budget Request for FY2016
(NSPIRES web site http://nspires.nasaprs.com/external/)

- Science Mission Directorate (SMD) www.science.nasa.gov/
 Heliophysics Research and Analysis $ 34M
 Astrophysics Research and Analysis $ 72M
 Earth Science Research and Analysis $348M
 Planetary Science Research and Analysis $163M

- Aeronautics Research Mission Directorate (ARMD) www.aeronautics.nasa.gov/
 Airspace Operations and Safety $142M
 Advanced Air Vehicles Program $241M
 Integrative Aviation Systems $ 96M
 Transformative Aeronautics Concepts $ 92M

 Human Research Program $168M

- Space Technology Mission Directorate www.nasa.gov/directorates/spacetech/home/index.html
 Space Technology Research and Development $491M

- Office of Education www.nasa.gov/offices/education/contacts/hqdirectory.html
 Aerospace Research and Career Development $ 33M
 STEM Education and Accountability $ 56M

The four directorates each promulgate annual NASA Research Announcements (NRA) for competitive proposals:

SMD Research Opportunities in Space and Earth Science (ROSES)
 Stand Alone Mission of Opportunity Notice (SALMON)

ARMD Research Opportunities in Aeronautics (ROA)

HEO Res & Technol Development to Support Crew Health & Performance in Space Exploration Missions

STMD NASA Innovative Advanced Concepts (NIAC)
 Space Technology Research Grants (STRG)
NASA as part of Federal “Basic and Applied Research” Funding

in billions of constant FY 2014 dollars

FY 2009 figures include Recovery Act appropriations.
Research includes basic research and applied research.
NSPIRES is the web interface that most scientists use to submit proposals to the Science Mission Directorate. There are tutorials on the NSPIRES pages, in addition this website a few pointers here that have come up recently with tragic consequences.

- NSPIRES basics: how to register
- NSPIRES basics: adding team members
- NSPIRES basics: release and submit proposal
- NSPIRES warnings and errors: why can't I submit
- NSPIRES budgets: CS labor in NSPIRES cover pages

NSPIRES Helpful Hints http://science.nasa.gov/researchers/sara/how-to-guide/maxs-nspires-helpful-hints/

NSPIRES Help http://nspires.nasaprs.com/external/help.do;jsessionid=ByYyN4mNWLKHvYVJd5CJWmJGLnQ2TdtJR0WyGyqQTXkcV216g6Gp!1254946340!-1407319094!7006!-1!-1909677563!-1407319093!7006!-1

NASA e-mail alerts to new opportunities can be arranged at: http://spacescience.nasa.gov/announce/listserv.htm
SMD Organization

Associate Administrator (AA) (John Grunsfeld)
Deputy AA (Geoff Yoder)

Deputy AA for Programs (Greg Robinson)
Deputy AA for Mgt (Roy Maizel)
Deputy AA for Research (Marc Allen)

Resource Management Division
Dir. (C. Tupper)
Dep. (K. Wolf)

Strategic Integration & Management Division
Dir. (D. Woods)
Dep. (J. Feeley)

Science Engagement & Partnerships Dir. (K. Erickson)

Earth Science Division
Dir. (M. Freilich)
Dep. (M. Luce)
- Flight (S. Neeck - Act)
- Applied Sciences (L. Friedl)
- Research (J. Kaye)
- Technology (GSFC) (G. Komar)

Joint Agency Satellite Division
Dir. (S. Clarke)
Dep. (J.C. Duh)

Heliophysics Division
Dir. (J. Newmark-Act)
Dep. (S. Smalley)

Planetary Science Division
Dir. (J. Green)
Dep. (D. Schurr)
- Solar System Expl (D. Schurr - Act)
- Mars Exploration (J. Watzin)
- Planetary Research (J.Rall)

Astrophysics Division
Dir. (P. Hertz)
Dep. (A. Razzaghi)

JWST Program Office
Dir. (Vacant)*
Dep. (E. Smith)

Science Engagement & Partnerships Dir. (K. Erickson)

Embeds/POCs
- Chief Engineer (J. Pellicciotti)
- Safety & Msn Assurance (P. Panetta)
- General Counsel (S. Barber)
- Legislative & Intergvt Affairs (G. Adler)
- Public Affairs (D. Brown)
- Intl & Interagency Relations (K. Feldstein)

* Direct report to NASA Associate Administrator
Research Opportunities in Space and Earth Sciences (ROSES)

What:
ROSES “appendices” are issued during the year with detailed description of programs, program officers and due dates for:

A: Earth Sciences
B: Heliophysics
C: Planetary Science
D: Astrophysics
E: Cross-Division

The typical period of performance for an award is three to five years

NASA uses a peer review process to evaluate and select research proposals submitted in response to these research announcements.

Statistics on awards - http://science.nasa.gov/researchers/sara/grant-stats/

How Much:

Awards range from under $100K per year for focused, limited efforts (e.g., data analysis) to more than $1M per year for extensive activities (e.g., development of science experiment hardware).

When: Varying dates - notice of intent (NOI) and proposal due dates are provided in the ROSES announcement and amendments

Where: http://nasascience.nasa.gov/researchers
http://nasascience.nasa.gov/researchers/sara/program-officers-list
http://nspires.nasaprs.com/external/
The following sections describe each Science Focus Area. Each section describes the scientific field, NASA's current contribution, and next major steps in the period 2007-2016.

- **Atmospheric Composition**
 Atmospheric Composition is focused on the composition of Earth's atmosphere in relation to climate prediction, solar effects, ground emissions and time.

- **Weather**
 Our weather system includes the dynamics of the atmosphere and its interaction with the oceans and land. The improvement of our understanding of weather processes and phenomena is crucial in gaining an understanding of the Earth system.

- **Climate Variability & Change**
 NASA's role in climate variability study is centered around providing the global scale observational data sets on oceans and ice, their forcings, and the interactions with the entire Earth system.

- **Water & Energy Cycle**
 Through water and energy cycle research we can improve hurricane prediction, quantify tropical rainfall and eventually begin to balance the water budget at global and regional scales.

- **Carbon Cycle & Ecosystems**
 This Focus Area deals with the cycling of carbon in reservoirs and ecosystems as it changes naturally, is changed by humans, and is affected by climate change.

- **Earth Surface & Interior**
 The goal of the Earth Surface and Interior focus area is to assess, mitigate and forecast the natural hazards that affect society, including earthquakes, landslides, coastal and interior erosion, floods and volcanic eruptions.
2015 NASA SMD ROSES NRA
Appendix (topics) A - Earth Science

<table>
<thead>
<tr>
<th>Program</th>
<th>POC</th>
<th>Org</th>
<th>Email</th>
<th>Tel</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Earth Science Overview</td>
<td>Dr. Garik Gutman</td>
<td>ESD/SMD</td>
<td>ggutman@nasa.gov</td>
</tr>
<tr>
<td>A2</td>
<td>Land-Cover / Land-Use Change</td>
<td>Dr. Paula Bontempi</td>
<td>ESD/SMD</td>
<td>paula.s.bontempi@</td>
</tr>
<tr>
<td>A3</td>
<td>Ocean Biology and Biogeochemistry</td>
<td>Dr. Paula Bontempi</td>
<td>ESD/SMD</td>
<td>eric.s.kasischke@</td>
</tr>
<tr>
<td>A4</td>
<td>Terrestrial Ecology</td>
<td>Dr. Eric Lindstrom</td>
<td>ESD/SMD</td>
<td>eric.j.lindstrom@</td>
</tr>
<tr>
<td>A5</td>
<td>Carbon Cycle Science</td>
<td>Dr. Eric Lindstrom</td>
<td>ESD/SMD</td>
<td>eric.j.lindstrom@</td>
</tr>
<tr>
<td>A6</td>
<td>Biodiversity</td>
<td>Dr. Woody Turner</td>
<td>ESD/SMD</td>
<td>woody.turner@</td>
</tr>
<tr>
<td>A7</td>
<td>Carbon Monitoring system</td>
<td>Dr. Kenneth Jucks</td>
<td>ESD/SMD</td>
<td>kenneth.w.jucks@</td>
</tr>
<tr>
<td>A8</td>
<td>Physical Oceanography</td>
<td>Dr. Eric Lindstrom</td>
<td>ESD/SMD</td>
<td>eric.j.lindstrom@</td>
</tr>
<tr>
<td>A9</td>
<td>Ocean Salinity Field Campaign</td>
<td>Dr. Eric Lindstrom</td>
<td>ESD/SMD</td>
<td>eric.j.lindstrom@</td>
</tr>
<tr>
<td>A10</td>
<td>Surface Water and Ocean Topography Science Team</td>
<td>Dr. Eric Lindstrom</td>
<td>ESD/SMD</td>
<td>eric.j.lindstrom@</td>
</tr>
<tr>
<td>A11</td>
<td>Ocean Surface Topography Science Team</td>
<td>Dr. Eric Lindstrom</td>
<td>ESD/SMD</td>
<td>eric.j.lindstrom@</td>
</tr>
<tr>
<td>A12</td>
<td>Ocean Vector Winds Science Team</td>
<td>Dr. Eric Lindstrom</td>
<td>ESD/SMD</td>
<td>eric.j.lindstrom@</td>
</tr>
<tr>
<td>A13</td>
<td>Modeling, Analysis and Prediction</td>
<td>Dr. David Considine</td>
<td>ESD/SMD</td>
<td>dave.considine@</td>
</tr>
<tr>
<td>A14</td>
<td>Cryospheric Science</td>
<td>Dr. Thomas Wagner</td>
<td>ESD/SMD</td>
<td>thomas.wagner@</td>
</tr>
<tr>
<td>A15</td>
<td>IceBridge Research</td>
<td>Dr. Thomas Wagner</td>
<td>ESD/SMD</td>
<td>thomas.wagner@</td>
</tr>
<tr>
<td>A16</td>
<td>Upper Atmosphere Research Program and Aura</td>
<td>Dr. Kenneth Jucks</td>
<td>ESD/SMD</td>
<td>kenneth.w.jucks@</td>
</tr>
<tr>
<td>A17</td>
<td>Radiation Sciences Program</td>
<td>Dr. Hal Maring</td>
<td>ESD/SMD</td>
<td>hal.maring@</td>
</tr>
<tr>
<td>A18</td>
<td>Atmos Comp: Modeling and Analysis</td>
<td>Dr. Thomas Wagner</td>
<td>ESD/SMD</td>
<td>thomas.wagner@</td>
</tr>
<tr>
<td>A19</td>
<td>KORUS-AQ: International Cooperative Air Quality</td>
<td>Dr. Alex Pszenny</td>
<td>ESD/SMD</td>
<td>alex.pszenny@</td>
</tr>
<tr>
<td>A20</td>
<td>Terrestrial Hydrology</td>
<td>Dr. Jared K. Entin</td>
<td>ESD/SMD</td>
<td>jared.k.entin@</td>
</tr>
<tr>
<td>A21</td>
<td>NASA Energy and Water Cycle Study</td>
<td>Dr. Jared K. Entin</td>
<td>ESD/SMD</td>
<td>jared.k.entin@</td>
</tr>
<tr>
<td>A22</td>
<td>Science Utilization of the Soil Moisture Active-Passive</td>
<td>Dr. Jared K. Entin</td>
<td>ESD/SMD</td>
<td>jared.k.entin@</td>
</tr>
<tr>
<td>A23</td>
<td>Precipitation Measurement Missions Science Team</td>
<td>Dr. Ramesh K. Kakar</td>
<td>ESD/SMD</td>
<td>ramesh.k.kakar@</td>
</tr>
<tr>
<td>A24</td>
<td>Weather Focus Area</td>
<td>Dr. Tsengdar Lee</td>
<td>ESD/SMD</td>
<td>tsengdar.j.lee@</td>
</tr>
<tr>
<td>A25</td>
<td>Earth Surface and Interior</td>
<td>Dr. Benjamin Phillips</td>
<td>ESD/SMD</td>
<td>ben.phillips@</td>
</tr>
<tr>
<td>A26</td>
<td>Rapid Response and Novel Research in Earth Science</td>
<td>Dr. Thomas Wagner</td>
<td>ESD/SMD</td>
<td>thomas.wagner@</td>
</tr>
<tr>
<td>A27</td>
<td>GRACE and GRACE-FO Science Team</td>
<td>Dr. Lucia Tsaoussi</td>
<td>ESD/SMD</td>
<td>lucia.s.tsaoussi@</td>
</tr>
<tr>
<td>A28</td>
<td>Space Archaeology</td>
<td>Mr. Craig Dobson</td>
<td>ESD/SMD</td>
<td>craig.dobson@</td>
</tr>
<tr>
<td>A29</td>
<td>Airborne Inst Technol Transition</td>
<td>Dr. Jack Kaye</td>
<td>ESD/SMD</td>
<td>jack.a.kaye@</td>
</tr>
<tr>
<td>A30</td>
<td>Earth Science US Participating Investigator</td>
<td>Dr. Richard Eckman</td>
<td>ESD/SMD</td>
<td>richard.s.eckman@</td>
</tr>
<tr>
<td>A31</td>
<td>Interdisciplinary Research in Earth Science</td>
<td>Dr. Jack Kaye</td>
<td>ESD/SMD</td>
<td>jack.a.kaye@</td>
</tr>
<tr>
<td>A32</td>
<td>NASA Data for Operation and Assessment</td>
<td>Dr. Tsengdar Lee</td>
<td>ESD/SMD</td>
<td>tsengdar.j.lee@</td>
</tr>
<tr>
<td>A33</td>
<td>CloudSat and CALIPSO Science Team Recompete</td>
<td>Dr. David Considine</td>
<td>ESD/SMD</td>
<td>david.b.considine@</td>
</tr>
<tr>
<td>A34</td>
<td>Satellite Calibration Interconsistency Studies</td>
<td>Dr. Lucia Tsaoussi</td>
<td>ESD/SMD</td>
<td>lucia.s.tsaoussi@</td>
</tr>
<tr>
<td>A35</td>
<td>New (Early Career) Investigator in Earth Science</td>
<td>Dr. Ming-Ying Wei</td>
<td>ESD/SMD</td>
<td>ming-ying.w.ei-1@</td>
</tr>
<tr>
<td>A36</td>
<td>Advancing Collaborative Connections for Earth System Science</td>
<td>Dr. Curt Tilmus</td>
<td>ESD/SMD</td>
<td>curt.tilmus@</td>
</tr>
<tr>
<td>A37</td>
<td>Making Earth System Data Records for use in Reanalysis</td>
<td>Dr. Lucia Tsaoussi</td>
<td>ESD/SMD</td>
<td>lucia.s.tsaoussi@</td>
</tr>
<tr>
<td>A38</td>
<td>Computational Modeling Algorithms and Cyber</td>
<td>Dr. Tsengdar Lee</td>
<td>ESD/SMD</td>
<td>tsengdar.j.lee@</td>
</tr>
<tr>
<td>A39</td>
<td>Advanced Information Systems Technology</td>
<td>Dr. Michael Little</td>
<td>ESO/SMD</td>
<td>michael.m.little@</td>
</tr>
<tr>
<td>A40</td>
<td>Instrument Incubator</td>
<td>Mr. Parminder Ghuman</td>
<td>ESO/SMD</td>
<td>p.ghuman@</td>
</tr>
<tr>
<td>A41</td>
<td>Advanced Component Technology</td>
<td>Mr. Joseph Famiglietti</td>
<td>ESO/SMD</td>
<td>joseph.famiglietti@</td>
</tr>
<tr>
<td>A42</td>
<td>In-Space Validation of Earth Science Technologies</td>
<td>Ms Pamela Millar</td>
<td>ESO/SMD</td>
<td>pamela.s.millar@</td>
</tr>
</tbody>
</table>
Heliophysics research and exploration focuses on studying the Sun, the heliosphere, and planetary environments as elements of a single, interconnected system, one that contains dynamic space weather and evolves in response to solar, planetary, and interstellar conditions. Such an understanding represents not just a grand intellectual accomplishment for our times—it also provides knowledge and predictive capabilities essential to future utilization and exploration of space.

- **Heliosphere**
 Plasmas and their embedded magnetic fields affect the formation, evolution and destiny of planets and planetary systems. The heliosphere shields the solar system from galactic cosmic radiation. Our habitable planet is shielded by its magnetic field, protecting it from solar and cosmic particle radiation and from erosion of the atmosphere by the solar wind. Planets without a shielding magnetic field, such as Mars and Venus, are exposed to those processes and evolve differently. And on Earth, the magnetic field changes strength and configuration during its occasional polarity reversals, altering the shielding of the planet from external radiation sources.

- **Magnetospheres**
 Determine changes in the Earth’s magnetosphere, ionosphere, and upper atmosphere in order to enable specification, prediction, and mitigation of their effects. Heliophysics seeks to develop an understanding of the response of the near-Earth plasma regions to space weather. This complex, highly coupled system protects Earth from the worst solar disturbances while redistributing energy and mass throughout.

- **Space Environment**
 Understand the causes and subsequent evolution of solar activity that affects Earth's space climate and environment. The climate and space environment of Earth are significantly determined by the impact of plasma, particle, and radiative outputs from the Sun. Therefore, it is essential to understand the Sun, determine how predictable solar activity truly is, and develop the capability to forecast solar activity and the evolution of disturbances as they propagate to Earth.
Appendix B - Heliophysics

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>POC</th>
<th>Org</th>
<th>Email</th>
<th>Tel</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Heliophysics Research Program Overview</td>
<td>Dr. Elsayed Talaat</td>
<td>HD/SMD</td>
<td>elsayed.r.talaat@</td>
<td>202 358 3804</td>
</tr>
<tr>
<td>B2</td>
<td>Heliophysics Supporting Research</td>
<td>Dr. Elsayed Talaat</td>
<td>HD/SMD</td>
<td>elsayed.r.talaat@</td>
<td>202 358 3804</td>
</tr>
<tr>
<td>B3</td>
<td>Heliophysics Technology and Instrumentation Development</td>
<td>Dr. Elsayed Talaat</td>
<td>HD/SMD</td>
<td>elsayed.r.talaat@</td>
<td>202 358 3804</td>
</tr>
<tr>
<td>B4</td>
<td>Heliophysics Guest Investigators</td>
<td>Dr. William Paterson</td>
<td>HD/SMD</td>
<td>william.r.paterson@</td>
<td>202 358 0991</td>
</tr>
<tr>
<td>B5</td>
<td>Heliophysics Grand Challenges Research</td>
<td>Dr. Arik Posner</td>
<td>HD/SMD</td>
<td>arik.posner@nasa.gov</td>
<td>202 358 0727</td>
</tr>
<tr>
<td>B6</td>
<td>Heliophysics Living with a Star Science</td>
<td>Dr. Madhulika Guhathakurta</td>
<td>HD/SMD</td>
<td>Madhulika.Guhathakurta@</td>
<td>202 358 1992</td>
</tr>
<tr>
<td>B7</td>
<td>Heliophysics Infrastructure and Data Environment Development</td>
<td>Dr. Jeffrey Hayes</td>
<td>HD/SMD</td>
<td>jhayes@</td>
<td>202 358 0353</td>
</tr>
</tbody>
</table>
Understanding the planets and small bodies that inhabit our solar system help scientists answer questions about its formation, how it reached its current diverse state, how life evolved on Earth and possibly elsewhere in the solar system, and what characteristics of the solar system lead to the origins of life.

• **Inner Solar System**
 The rocky planets of the inner Solar System are Mercury, Venus, Earth, and Mars. Learn more about how NASA Science is studying these planets.

• **Outer Solar System**
 The giant planets of the outer solar system—Jupiter, Saturn, Uranus, and Neptune—and their rings and moons and the ice dwarfs (e.g., Pluto, Charon, Sedna) beyond them hold many clues to the origin and evolution of our solar system as well as providing exciting opportunities for the search for habitable environments.

• **Small Bodies of the Solar System**
 NASA's Planetary Science missions to comets, asteroids and other small bodies help to expand our knowledge by providing close in observations of the small remnant pieces of the solar system's formation, revealing clues about the solar system’s early history and evolution and how life came to exist on Earth.
2015 NASA SMD ROSES NRA
Appendix C - Planetary Science

<table>
<thead>
<tr>
<th>Program</th>
<th>POC</th>
<th>Org</th>
<th>Email</th>
<th>Tel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Planetary Science Research Program Overview</td>
<td>Dr. Jeffrey Grossman</td>
<td>PSD/SMD</td>
<td>HQ-Cosmo@mail.</td>
<td>202 358 1218</td>
</tr>
<tr>
<td>C2 Emerging Worlds</td>
<td>Dr. Mary Voytek</td>
<td>PSD/SMD</td>
<td>mvoytek@hq.nasa.gov</td>
<td>202 358 1577</td>
</tr>
<tr>
<td>C3 Solar System Workings</td>
<td>Dr. Mitchell Schulte</td>
<td>PSD/SMD</td>
<td>mitchell.d.schulte@</td>
<td>202 358 2127</td>
</tr>
<tr>
<td>C4 Habitable Worlds</td>
<td>Dr. Michael New</td>
<td>PSD/SMD</td>
<td>michael.h.new@</td>
<td>202 358 1766</td>
</tr>
<tr>
<td>C5 Exobiology</td>
<td>Dr. Kelley Fast</td>
<td>PSD/SMD</td>
<td>kelly.e.fast@</td>
<td>202 358 0768</td>
</tr>
<tr>
<td>C6 Solar System Observations</td>
<td>Dr. Sarah Noble</td>
<td>PSD/SMD</td>
<td>sarah.k.noble@</td>
<td>202 358 5862</td>
</tr>
<tr>
<td>C7 Planetary Data Archiving, Restoration and Tools</td>
<td>Dr. Robert Fogel</td>
<td>PSD/SMD</td>
<td>rfgol@</td>
<td>202 358 2289</td>
</tr>
<tr>
<td>C8 Lunar Data Analysis</td>
<td>Dr. Mitchell Schulte</td>
<td>PSD/SMD</td>
<td>mitchell.d.schulte@</td>
<td>202 358 2127</td>
</tr>
<tr>
<td>C9 Mars Data Analysis</td>
<td>Dr. Jared Leisner</td>
<td>PSD/SMD</td>
<td>HQ-CDAP@mail.nasa.gov</td>
<td>202 358 2016</td>
</tr>
<tr>
<td>C10 Cassini Data Analysis</td>
<td>Dr. Christina Richey</td>
<td>PSD/SMD</td>
<td>christina.r.richey@</td>
<td>202 358 2206</td>
</tr>
<tr>
<td>C11 Discovery Data Analysis</td>
<td>Dr. James Gaier</td>
<td>PSD/SMD</td>
<td>james.r.gaier@</td>
<td>260 579 3442</td>
</tr>
<tr>
<td>C12 Planetary Instrument Concepts for Solar</td>
<td>Dr. Janice L. Buckner</td>
<td>PSD/SMD</td>
<td>janice.l.buckner@</td>
<td>202 358 0813</td>
</tr>
<tr>
<td>C13 Maturation of Inst for Solar</td>
<td>Dr. Dr. Sarah Noble</td>
<td>PSD/SMD</td>
<td>sarah.k.noble@</td>
<td>202 358 5862</td>
</tr>
<tr>
<td>C14 Planetary S&T through Analog Research</td>
<td>Dr. Catharine Conley</td>
<td>PSD/SMD</td>
<td>HQ-PPR@mail.</td>
<td>202 358 3912</td>
</tr>
<tr>
<td>C15 Planetary Protection Research</td>
<td>Dr. Bruce A. May</td>
<td>PSD/SMD</td>
<td>mvoytek@hq.nasa.gov</td>
<td>202 358 1577</td>
</tr>
<tr>
<td>C16 Early Career Fellowship</td>
<td>Dr. Jeffrey Grossman</td>
<td>PSD/SMD</td>
<td>HQ-LARS@mail.</td>
<td>202 358 1218</td>
</tr>
<tr>
<td>C17 Planetary Major Equipment</td>
<td>Dr. Tony Carro</td>
<td>PSD/SMD</td>
<td>anffy.carro-1@</td>
<td>202 358 0349</td>
</tr>
</tbody>
</table>
The Astrophysics Division has laid out a strategy to discover the origin, structure, evolution of our cosmos.

- **Planets Around Other Stars**
 In the early 1990’s radio and optical astronomers detected small changes in stellar emission which revealed the presence of first a few, and now many, planetary systems around other stars. We call these planets “exoplanets” to distinguish them from our own solar system neighbors.

- **The Big Bang**
 The 1929 discovery by Edwin Hubble that the Universe is in fact expanding at enormous speed was revolutionary. The Universe must have been born in this single violent event which came to be known as the "Big Bang."

- **Dark Energy, Dark Matter**
 What is dark energy? More is unknown than is known — we know how much there is, and we know some of its properties; other than that, dark energy is a mystery — but an important one. Roughly 70% of the Universe is made of dark energy. Dark matter makes up about 25%. T

- **Stars**
 How do stars form and evolve? The age, distribution, and composition of the stars in a galaxy trace the history, dynamics, and evolution of that galaxy. Moreover, stars are responsible for the manufacture and distribution of heavy elements such as carbon, nitrogen, and oxygen, and their characteristics are intimately tied to the characteristics of the planetary systems that may coalesce about them.

- **Galaxies**
 Our galaxy, the Milky Way, is typical: it has hundreds of billions of stars, enough gas and dust to make billions more stars, and about six times as much dark matter as all the stars and gas put together. And it’s all held together by gravity. Like more than two-thirds of the known galaxies, the Milky Way has a spiral shape. At the center of the spiral, a lot of energy and, occasionally, vivid flares are being generated.

- **Black Holes**
 In recent years, NASA instruments have painted a new picture of these strange objects that are, to many, the most fascinating objects in space.
2014 NASA SMD ROSES NRA
Appendix D - Astrophysics

<table>
<thead>
<tr>
<th>POC</th>
<th>Org</th>
<th>Email</th>
<th>Tel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Douglas Hudgins</td>
<td>AD/SMD</td>
<td>douglas.m.hudgins@</td>
<td>202 358 0988</td>
</tr>
<tr>
<td>Dr. Michael Garcia</td>
<td>AD/SMD</td>
<td>michael.r.garcia@nasa.gov</td>
<td>202 358 1053</td>
</tr>
<tr>
<td>Dr. Keith MacGregor</td>
<td>AD/SMD</td>
<td>keith.b.macgregor@</td>
<td>202 358 2463</td>
</tr>
<tr>
<td>Dr. Martin Still</td>
<td>AD/SMD</td>
<td>martin.still@</td>
<td>202 358 4462</td>
</tr>
<tr>
<td>Dr. Keith MacGregor</td>
<td>AD/SMD</td>
<td>keith.b.macgregor@</td>
<td>202 358 2463</td>
</tr>
<tr>
<td>Dr. Douglas Hudgins</td>
<td>AD/SMD</td>
<td>douglas.m.hudgins@</td>
<td>202 358 0988</td>
</tr>
<tr>
<td>Dr. Debra Wallace</td>
<td>AD/SMD</td>
<td>debra.j.wallace@</td>
<td>202 358 0917</td>
</tr>
<tr>
<td>Dr. Douglas Hudgins</td>
<td>AD/SMD</td>
<td>douglas.m.hudgins@</td>
<td>202 358 0988</td>
</tr>
<tr>
<td>Dr. Rita Sambruna</td>
<td>AD/SMD</td>
<td>rita.m.sambruna@</td>
<td>202 358 2166</td>
</tr>
<tr>
<td>Dr. Mario Perez</td>
<td>AD/SMD</td>
<td>marioperez@</td>
<td>202 358 1535</td>
</tr>
<tr>
<td>Dr. Billie Lightsey</td>
<td>AD/SMD</td>
<td>billy.lightsey@</td>
<td>202 306 1896</td>
</tr>
<tr>
<td>Dr. Louis Kaluzienski</td>
<td>AD/SMD</td>
<td>louis.j.kaluzienski@</td>
<td>202 358 0365</td>
</tr>
</tbody>
</table>

TDEM Technology Development for Exoplanet Missions
TPCOS Technology Development for the Physics of Cosmos Program
TCOR Technology Development for the Cosmic Origins Program
2014 SMD ROSES NRA
Appendix E - Cross Division

<table>
<thead>
<tr>
<th>POC</th>
<th>Org</th>
<th>Email</th>
<th>Tel</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Cross Division Research Overview</td>
<td>Dr. Max Bernstein</td>
<td>SMD</td>
</tr>
<tr>
<td>E2</td>
<td>Topical Workshops, Symposia and Conferences</td>
<td>Dr. Christina Richey</td>
<td>PSD/SMD</td>
</tr>
</tbody>
</table>
What:
The Stand Alone Mission of Opportunity Notice (SALMON) AO invites proposals for Missions of Opportunity (MO). A MO is a focused space flight investigation that offers high scientific or technical value for a modest cost to NASA. There are five categories of MO:

- Partner Missions of Opportunity (PMOs) provide a critical component of a non-NASA or non-US mission – such as a complete science instrument, hardware or software components, technology demonstrations, or research experiments.
- U.S. Participating Investigators (USPIs) are complete science investigations that are realized through the participation of U.S. investigators on non-NASA missions and do not involve the development of hardware or software components or complete instruments or subsystems.
- New Science Missions using Existing Spacecraft are investigations that propose a scientific new use of existing NASA spacecraft.
- Small Complete Missions (SCMs) are scientifically or technically valuable investigations that can be realized within the specified cost cap, including the cost of their access to space if not provided by NASA.
- Focused Missions of Opportunity (FMOs) address a specific, NASA-identified flight.

Proposals will be assessed against announcement criteria by panels of individuals who are peers of the proposers in the relevant scientific and technical areas.

Traditionally, Missions of Opportunity have been solicited in conjunction with SMD AOs for PI-led missions (e.g., Discovery, Explorer, Earth System Science Pathfinder (ESSP), Mars Scout, New Frontiers). The SALMON AO incorporates Program Element Appendices (PEAs) for general MO proposal opportunities, as well as for focused proposal opportunities for specific flight opportunities.

How Much / When: Varies by PEA/MO

Where: NNH12ZDA006O
NASA can best contribute to the nation’s future societal and economic vitality by focusing aeronautics research in six thrust areas that are responsive to a growing demand for mobility, challenges to the sustainability of energy and the environment, and technology advances in information, communications and automation.

The six areas are:
1. Assured autonomy for aviation transformation
2. Innovation in commercial supersonic aircraft
3. Ultra-efficient commercial vehicles
4. Transition to low-carbon propulsion
5. Real-time system safety assurance
6. Safe, efficient growth in global operations

To most effectively manage the research needed to address these six areas, NASA’s Aeronautics Research Mission Directorate has restructured itself. Three mission programs –
• the Airspace Operations and Safety Program
• the Advanced Air Vehicles Program
• the Integrated Aviation Systems Program
will address the first goal: to clearly define the most compelling technical challenges facing the aviation industry, and retire these challenges in a time frame that is supported by the stakeholders and required by NASA’s customers.
Advanced Air Vehicles Program (AAVP)
Innovative design concepts developed by AAVP for advanced vehicles integrate multiple, simultaneous vehicle performance considerations that focus on fuel burn, noise, emissions and intrinsic safety. The goal: to enable new aircraft to fly safer, faster, cleaner, quieter, and use fuel far more efficiently. The projects include: Aeronautics Evaluation and Test Capabilities; Advanced Air Transport Technology; Advanced Composites; Commercial Supersonic Technology; and Revolutionary Vertical Lift Technology.

Aerospace Operations and Safety Program (AOSP)
The goal of AOSP-developed NextGen methods and means is to provide advanced levels of automated support to air navigation service providers and aircraft operators for reduced air travel times and air travel-related delays, and to insure greater safety in all weather conditions. The projects include: Airspace Technology Demonstrations; Shadow Mode Assessment Using Realistic Technologies for the National Airspace System; and Safe Autonomous systems Operations.

Integrated Aviation Systems Program (IASP)
Conduct flight oriented, integrated, system-level research and technology development that supports the flight research needs across the ARMD strategic thrusts, the programs and their projects. The projects include: Environmentally Responsible Aviation; Unmanned Aircraft System Integration in the National Airspace System; and Flight Demonstrations and Capabilities.

Transformative Aeronautics Concepts Program (TACP)
The Transformative Aeronautics Concepts Program (TACP) cultivates multi-disciplinary, revolutionary concepts to enable aviation transformation. The projects include: Convergent Aeronautics Solutions, Transformational Tools and Technologies; and Leading Edge Aero Research for NASA.
What: ARMD conducts high-quality, cutting-edge research:
• Foundational research across a breadth of core aeronautics competencies that supports aeronautics and space exploration activities;
• Key areas related to the development of advanced aircraft technologies and systems, including those related to aircraft safety, environmental compatibility, and fuel efficiency
• Research that supports the Next Generation Air Transportation System (NextGen) in partnership with the Joint Planning and Development Office
• New topics added as “Appendices to the ROA” Research Announcement as the year progresses
• Standard period of performance is three years.
• Evaluation by peers of the proposing personnel is used to assess proposals

How Much: Funding levels vary with the different topics

When: Varying dates - notice of Intent (NOI) and proposal due dates are provided in the ROA announcement or subsequent amendments

Where: (NRA): NNH15ZEA001N
 http://www.aeronautics.nasa.gov/index.htm
 http://nspires.nasaprs.com/external/
2015 NASA ARMD NRA

Appendices (Topics) A through D

<table>
<thead>
<tr>
<th>Append</th>
<th>Program</th>
<th>Principal</th>
<th>Org</th>
<th>Email</th>
<th>Tel</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>Advanced Air Vehicles Overview</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>Advanced Air Transport Technology (AATT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-3</td>
<td>Revolutionary Vertical Lift Technology (RVLT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-4</td>
<td>Commercial Supersonic Technology (CST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-5</td>
<td>Advanced Composites (AC)</td>
<td>Robert A Martin</td>
<td>Robert.A.Martin@nasa.gov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-6</td>
<td>Aeronautics Evaluation and Test Capabilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-1</td>
<td>Airspace Operations and Safety Program Overview</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td>Airspace Technology Demonstration Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-3</td>
<td>Shadow-mode Assessment Using Realistic Technologies for the National Airspace System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-4</td>
<td>Safe Autonomous Systems Operations Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-1</td>
<td>Integrated Aviation Systems Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-2</td>
<td>Environmentally Responsible Aviation (ERA) Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-3</td>
<td>Unmanned Aircraft Systems Integration in the National Airspace System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-4</td>
<td>Flight Demonstrations and Capabilities Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-1</td>
<td>Transformative Aeronautics Concepts Program Overview</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-2</td>
<td>Leading Edge Aeronautics Research for NASA Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-3</td>
<td>Transformational Tools and Technologies (TTT) Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-4</td>
<td>Convergent Aeronautics Solutions (CAS) Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What: The goal of the HRP is to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The scope of this goal includes both the successful completion of exploration missions and the preservation of astronaut health over the life of the astronaut. Specific objectives in support of this goal are:

1. Quantification of the crew health and performance risks associated with human spaceflight for the various exploration missions.
2. Development of countermeasures to provide mission planners and system developers with strategies for mitigating crew health and performance risks.
3. Development of technologies to provide mission planners and system developers with strategies for monitoring and mitigating crew health and performance risks.

Specific opportunities/due dates are published as Appendices:
- Appendix A: NASA Research and Technology Development to Support Crew Health and Performance in Space Exploration Missions
- Appendix B: NSBRI Research and Technology Development to Support Crew Health and Performance in Space Exploration Missions
- Appendix C: NASA Human Research Program Omnibus Opportunity
- Appendix D: NASA Ground-Based Studies in Space Radiobiology

How Much: Range from $100 - $450K/yr for one to five years

When: varies by appendix, parent solicitation open until 4 Sept 2015

Where: NRA: NNJ14ZSA001N
http://www.nsbri.org/FUNDING-OPPORTUNITIES/Current-Announcements/
Appendix A: NASA Research and Technology Development to Support Crew Health and Performance in Space Exploration Missions - proposals are solicited in the areas of:

- Physiological Stress and Clinical Incidence Onboard the International Space Station,
- Vertebral Strength Analysis in Astronauts after Long Duration Spaceflight: Analysis/Evaluation of Existing Data,
- Tissue Sharing Opportunities from a 90-Day Hind-Limb Rat Suspension Study,
- Identification and Maintenance of Team Shared Mental Models over Long Durations,
- Effective Team Composition for Long Duration Space Exploration,
- Lighting Protocols for Exploration – HERA Campaign,
- Automated Tools for Scheduling Behavioral Countermeasures for Exploration - HERA Campaign,
- Investigate Effects of Acute CO2 Exposure with Existing Measures,
- Asynchronous Behavioral Health Treatment Techniques,
- Innovative Research in Behavioral Health and Performance for the Human Exploration Research Analog (HERA),
- Host-Microbe Virulence Mechanisms,
- Electronic Procedures for Autonomous Crews, and
- Generalizable Skills and Knowledge for Exploration Missions.

Unless otherwise noted, these projects are expected to be multiple year efforts.

Appendix B: NSBRI Research and Technology Development to Support Crew Health and Performance in Space Exploration Missions - proposals are solicited in the areas of:

- Cardiovascular Alterations,
- Human Factors and Performance,
- Musculoskeletal Alterations,
- Neurobehavioral and Psychosocial Factors,
- Sensorimotor Adaptation, and
- Smart Medical Systems and Technology.

These projects are expected to be multiple year efforts.
NASA Space Biology Research
NRA NNH14ZTT001N

What:
Hypothesis-driven Space Biology (SB) research proposals to conduct Space Flight Experiments on the International Space Station (ISS) in the research areas:

- Mechanisms of Mammalian Adaptation to Long-term Spaceflight and Readaptation on Return to Earth
- Mammalian Cell, Tissue and Organ Generation and Degeneration in Space
- Multigenerational and Developmental Biology of Invertebrates
- Plant and microbial growth and Physiological Responses to the Multiple Stimuli Encountered in Space Flight Environments
- Experiments Demonstrating the Roles of Microbial-plant Systems in Long-term Life Support Systems
- Long-term, Multigenerational Studies of microbial Population Dynamics
- ISS Rodent Tissue Sharing
- Space Biology Investigations Using Nanoracks Cubelab ISS Flight Hardware

All ISS Space Flight Experiments will be awarded in two phases: a Flight Definition Phase first, followed by a Spaceflight Experiment Phase.

When: For 2014 Solicitation
Step-1 Proposals due 19 Dec 2013
Step-2 Proposals due 20 Mar 2014
The Space Technology program will advance multi-purpose technology, in some cases to flight-ready status. The Space Technology Program will complement the mission-focused technology development activities in NASA's Mission Directorates, delivering solutions to NASA's needs for new technologies in support of future NASA missions in science and exploration, as well as the needs of other government agencies and the Nation's space industry in a manner similar to the way National Advisory Committee for Aeronautics aided the early aeronautics industry. The Space Technology Program will enable new approaches to NASA's current mission set and allow NASA to pursue entirely new missions.

1. **Innovative Advanced Concepts (NIAC) Program**
 NIAC focuses on early studies of visionary aerospace concepts. These will be architecture, mission, or system concepts and aiming ten or more years in the future.

2. **Space Technology Research Grants Program**
 STRGP will accelerate the development of "push" technologies to support the future space science and exploration needs of NASA, other government agencies and the commercial space sector. Innovative efforts with high risk and high payoff will be encouraged.

3. **Game Changing Development Program**
 This program focuses on maturing advanced space technologies that may lead to entirely new approaches for the Agency's future space missions and solutions to significant national needs.

4. **Small Spacecraft Technology Program**
 This program will undertake both development of small spacecraft technologies and flight demonstrations of new technologies.
Space Technology Research, Development, Demonstration, and Infusion 2015 (SpaceTech-REDDI-2015)

What:
The following STMD programs are included in the solicitation:
- NASA Innovative Advanced Concepts (NIAC) Program focuses on visionary aeronautics and space system concepts. TRL Range: 1-3
- Space Technology Research Grants (STRG) Program engages academia in innovative research in advanced space technology TRL Range: 1-3
- Game Changing Development (GCD) Program focuses on maturing advanced space technologies that may lead to entirely new approaches for the Agency’s future space missions. TRL Range: 3-5
- Small Spacecraft Technology (SST) Program develops and demonstrates subsystem technologies and new mission capabilities for small spacecraft. TRL Range: 3-7
- Technology Demonstration Missions (TDM) Program seeks to mature laboratory-proven technologies to flight-ready status. TRL Range: 5-7
- Flight Opportunities Program (FOP) facilitates low-cost access to suborbital environments for a broad range of innovators as a means of advancing space technology development and supporting the evolving entrepreneurial commercial space industry. TRL Range: 5-7

Proposals for technology research, development and demonstration in support of STMD will be solicited through Appendices under this umbrella solicitation as technology topics are defined and funding is made available for new opportunities. The Appendices will provide key information including: specific scope of the work solicited, anticipated budget for new awards, number of awards anticipated, notice of intent and proposal due dates, and specific instructions about proposal content and evaluation criteria.

How Much:

When: Estimated appendix released dates in next chart

Where: NRA NNH15ZOA001N
Release of Appendices is subject to availability of appropriated funds and may change. Additional Appendices may be issued throughout the year as needed.
Additional information about STMD programs is available at http://www.nasa.gov/directorates/spacetech/home/index.html.
What: NIAC will support innovative research through two phases of study. The Phase I awards culminating from this call will be nine-month efforts to explore the overall feasibility and viability of visionary concepts. A follow-on Phase II proposal call will later be released to eligible recipients of Phase I awards, past and present, to further develop the most promising Phase I concepts for up to two years and to explore potential infusion options within NASA and beyond.

NIAC focuses on early studies of visionary aerospace concepts. These will be architecture, mission, or system concepts, typically Technology Readiness Level (TRL) 1-2 in maturity and aiming ten or more years in the future.

The proposed concept must satisfy all of the following attributes:
- An Aerospace Architecture, System, or Mission Concept
- Exciting
- Unexplored
- Credible

The NIAC call for proposals will be a two-step process. Phase I, Step A solicits a three page white paper and a separate one-page summary chart. These will be reviewed against the Phase I, Step A evaluation criteria in the NASA Research Announcement (NRA), and successful proposers will be invited to submit a full proposal in Phase I, Step B. These proposals will be given a full technical peer review according to the Step B evaluation criteria in the NRA.

When: White paper due 12 Nov 2014 for NIAC Phase I

How Much: typical award amount $500K

Where: NNH15ZUA001N-15NIAC-A1 (i.e., appendix 1)
NASA's Chief Technologist serves as the NASA Administrator's principal advisor and advocate on matters concerning agency-wide technology policy and programs. OCT is responsible for direct management of NASA's Space Technology programs and for coordination and tracking of all technology investments across the agency. OCT provides a technology and innovation focus for NASA through the following goals and responsibilities:

- Principal NASA advisor and advocate on matters concerning Agency-wide technology policy and programs.
- Up and out advocacy for NASA research and technology programs. Communication and integration with other Agency technology efforts.
- Coordination of technology investments across the Agency, including the mission-focused investments made by the NASA mission directorates. Perform strategic technology integration.
- Change culture towards creativity and innovation at NASA Centers, particularly in regard to workforce development.
- Document/demonstrate/communicate societal impact of NASA technology investments.
- Lead technology transfer and commercialization opportunities across Agency.
NASA Centers

NASA Centers have opportunities for internships and fellowships, and occasionally to fund University programs.

Ames Research Center http://www.nasa.gov/centers/ames/home/index.html
Dryden Flight Research Center http://www.nasa.gov/centers/dryden/home/index.html
Glenn Research Center http://www.nasa.gov/centers/glenn/home/index.html
Goddard Space Flight Center http://www.nasa.gov/centers/goddard/home/index.html
Goddard Institute of Space Studies http://www.giss.nasa.gov/
IV and V Facility http://www.nasa.gov/centers/ivv/home/index.html
Jet Propulsion Laboratory http://www.nasa.gov/centers/jpl/home/index.html
Johnson Space Center http://www.nasa.gov/centers/johnson/home/index.html
Kennedy Space Center http://www.nasa.gov/centers/kennedy/home/index.html
Langley Research Center http://www.nasa.gov/centers/langley/home/index.html
Marshall Space Flight Center http://www.nasa.gov/centers/marshall/home/index.html
Stennis Space Center http://www.nasa.gov/centers/stennis/home/index.html
The NASA University Research Centers, or URCs, project is designed to achieve a broad-based, competitive aerospace research capability among the Nation's Minority Institutions, or MIs, that will:

• Foster new aerospace science and technology concepts
• Expand the Nation's base for aerospace research and development
• Develop mechanisms for increased participation by faculty and students of MIs in mainstream research
• Increase the number of underrepresented and underserved students at Minority Serving Institutions who obtain advanced degrees in NASA-related fields

The specific objectives for URCs are to:

• Establish significant, multi-disciplinary scientific, engineering, and/or commercial research centers at the host university that contribute substantially to the programs of one or more of the four NASA Mission Directorates described in the NASA Strategic Plan
• Move increasingly towards gaining support from sources outside the URC project by aggressively pursuing additional funding opportunities offered by the NASA Mission Directorates, industry, and other funding agencies
• Improve the rates at which U.S. citizens, who historically have been underrepresented in NASA-related fields, are awarded undergraduate and graduate degrees at their respective universities in NASA-related fields

Awards are for five years, and do not exceed $1 million per year. Annually, twenty-five percent of the funding must be used as direct support to students.

The 13 active URCs were funded as Group 4 in 2008 and Group 5 in 2009.