Developing NIH Grant Proposals

Steven O. Moldin, Ph.D.
DC Office of Research Advancement
Office of the Vice President for Research

April 19, 2017
Course Objectives

• Understand federal R&D budget process
• Learn NIH organizational structure
• Identify NIH research priorities
• Understand NIH funding (“mechanisms”)
• Navigate submission & review processes
• Develop grant writing skills
• Improve advocacy skills
Composition of the Federal Budget
Outlays as share of total budget, 1962 - 2016

Source: Budget of the United States Government; FY 2016. "Investments" include outlays for R&D, education and training, direct non-defense infrastructure, and other grants, primarily for transportation. "Payments to Individuals" are primarily entitlement programs like Medicare, Medicaid, and Social Security, but also include many other public assistance programs. © 2015 AAAS

Obligations in billions of constant FY 2015 dollars

“Other” includes research not classified (includes basic research and applied research; excludes development and R&D facilities). Life sciences are split into NIH support for biomedical research and all other agencies’ support for life sciences.

Source: National Science Foundation, Federal Funds for Research and Development series. FY 2014 and 2015 data are preliminary. Constant-dollar conversions based on OMB’s GDP deflators. © 2015 AAAS
Current Estimates of Total R&D in FY17 Budget
percent change from FY16, nominal dollars, excluding new mandatory proposals

- DOE Energy Programs
- DOE Defense
- US Geological Survey
- Transportation
- Agriculture
- National Science Foundation
- DOE Science
- NIST
- DOD Development
- Veterans Affairs
- National Institutes of Health
- Homeland Security
- NOAA
- Environ Protection Agency
- NASA
- DOD S&T
- TOTAL
- Defense
- Nondefense
- Basic Research

Based on AAAS analyses of OMB, OSTP and agency budget data. © AAAS
Billions of constant FY 2016 Dollars

Source: 1975-1994 figures are from the NSF federal funds survey; remainder is from AAAS R&D reports. FY 2016 are estimates, FY 2017 is the President's request. © 2016 AAAS
NIH Appropriations in Current and Constant Dollars

Source: NIH Office of the Director, Office of Budget: http://officeofbudget.od.nih.gov/
NIH’s FY 2017 Budget Request

<table>
<thead>
<tr>
<th>Year</th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Level ($B)</td>
<td>$30.311</td>
<td>$32.311</td>
<td>$33.136</td>
</tr>
<tr>
<td>Competing RPGs (est.)</td>
<td>9,540</td>
<td>10,753</td>
<td>9,946</td>
</tr>
<tr>
<td>Total RPGs (est.)</td>
<td>34,379</td>
<td>35,840</td>
<td>36,440</td>
</tr>
<tr>
<td>Applicant Success Rate (est.)</td>
<td>18.3%</td>
<td>19.2%</td>
<td>17.5%</td>
</tr>
</tbody>
</table>

- The proposed increase of $825 million in FY 2017 would continue the progress achieved in FY 2016 and allow the highest total number of Research Project Grants (competing and noncompeting) in seven years.
NIH Organizational Structure

• Largest agency of Department of Health & Human Services (DHHS)
• Headquarters: Office of the Director
• NIH organized into 27 institutes & centers
 – One center conducts most NIH peer reviews
 – Two centers support intramural activities
 – 24 institutes provide extramural research support - each with specific research priorities
NIH Institutes & Centers

- NCI – Cancer
- NHLBI – Heart, Lung & Blood
- NIDDK – Diabetes & Digestive & Kidney Diseases
- NIDA – Drug Abuse
- NIAAA – Alcohol Abuse & Alcoholism
- NIBIB – Biomedical Imaging & Bioengineering
- NINR – Nursing Research
- NIA – Aging
- NICHD – Child Health & Human Development
- NIDCD – Deafness & Other Communication Disorders
- NIAID – Allergy & Infectious Diseases
- NEI – Eye Institute
- NHGRI – Human Genome Research
- NIMH – Mental Health
<table>
<thead>
<tr>
<th>NIH Institutes & Centers</th>
</tr>
</thead>
<tbody>
<tr>
<td>• NIAMS – Arthritis & Musculoskeletal & Skin Diseases</td>
</tr>
<tr>
<td>• NIDCR – Dental & Craniofacial Research</td>
</tr>
<tr>
<td>• NINDS – Neurological Disorders & Stroke</td>
</tr>
<tr>
<td>• NIEHS – Environmental Health Sciences</td>
</tr>
<tr>
<td>• NIGMS – General Medical Sciences</td>
</tr>
<tr>
<td>• FIC – Fogarty International Center</td>
</tr>
<tr>
<td>• NLM – National Library of Medicine</td>
</tr>
<tr>
<td>• NIMHD - National Institute on Minority Health & Health Disparities</td>
</tr>
<tr>
<td>• NCCAM – National Center for Complimentary & Alternative Medicine</td>
</tr>
<tr>
<td>• NCATS – National Center for Advancing Translational Sciences</td>
</tr>
<tr>
<td>• CSR – Center for Scientific Review</td>
</tr>
<tr>
<td>• CC – Clinical Center</td>
</tr>
<tr>
<td>• CIT – Center for Information Technology</td>
</tr>
<tr>
<td>• OD – Office of the Director</td>
</tr>
</tbody>
</table>
National Institutes of Health Budget, 1998-2016
budget authority in billions of constant FY 2015 dollars

Source: AAAS Report: Research and Development series and agency budget documents. FY 2015 figures are latest estimates, FY 2016 is the President’s request. © 2015 AAAS
Table 1. National Institutes of Health by Institute (budget authority in millions of dollars)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total by Institute (includes non-R&D components)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>4,932</td>
<td>4,953</td>
<td>5,098</td>
<td>145</td>
<td>2.9%</td>
</tr>
<tr>
<td>Allergy and Infect Diseases</td>
<td>4,401</td>
<td>4,418</td>
<td>4,615</td>
<td>197</td>
<td>4.5%</td>
</tr>
<tr>
<td>Heart, Lung, and Blood</td>
<td>2,999</td>
<td>2,996</td>
<td>3,072</td>
<td>76</td>
<td>2.5%</td>
</tr>
<tr>
<td>General Medical Sciences</td>
<td>2,357</td>
<td>2,372</td>
<td>2,434</td>
<td>61</td>
<td>2.6%</td>
</tr>
<tr>
<td>Diabetes, Digest, and Kidney 1/</td>
<td>1,884</td>
<td>1,899</td>
<td>1,938</td>
<td>39</td>
<td>2.1%</td>
</tr>
<tr>
<td>Neurological Disorders</td>
<td>1,589</td>
<td>1,605</td>
<td>1,660</td>
<td>56</td>
<td>3.5%</td>
</tr>
<tr>
<td>Mental Health</td>
<td>1,420</td>
<td>1,434</td>
<td>1,489</td>
<td>55</td>
<td>3.9%</td>
</tr>
<tr>
<td>Child Health & Human Dev</td>
<td>1,283</td>
<td>1,267</td>
<td>1,318</td>
<td>31</td>
<td>2.4%</td>
</tr>
<tr>
<td>Nat Ctr for Adv Translational Sci</td>
<td>634</td>
<td>633</td>
<td>660</td>
<td>27</td>
<td>4.3%</td>
</tr>
<tr>
<td>Office of the Director 2/</td>
<td>1,303</td>
<td>1,414</td>
<td>1,443</td>
<td>29</td>
<td>2.0%</td>
</tr>
<tr>
<td>Aging</td>
<td>1,172</td>
<td>1,198</td>
<td>1,267</td>
<td>70</td>
<td>5.8%</td>
</tr>
<tr>
<td>Drug Abuse</td>
<td>1,018</td>
<td>1,016</td>
<td>1,047</td>
<td>32</td>
<td>3.1%</td>
</tr>
<tr>
<td>Environmental Health Sc</td>
<td>666</td>
<td>667</td>
<td>682</td>
<td>14</td>
<td>2.2%</td>
</tr>
<tr>
<td>Superfund 3/</td>
<td>77</td>
<td>77</td>
<td>77</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>NIEHS Total</td>
<td>743</td>
<td>745</td>
<td>759</td>
<td>14</td>
<td>1.9%</td>
</tr>
<tr>
<td>Eye</td>
<td>676</td>
<td>677</td>
<td>695</td>
<td>18</td>
<td>2.7%</td>
</tr>
<tr>
<td>Arthritis / Musculoskeletal</td>
<td>520</td>
<td>522</td>
<td>533</td>
<td>12</td>
<td>2.2%</td>
</tr>
<tr>
<td>Human Genome</td>
<td>498</td>
<td>499</td>
<td>515</td>
<td>17</td>
<td>3.4%</td>
</tr>
<tr>
<td>Alcohol Abuse and Alcoholism</td>
<td>446</td>
<td>447</td>
<td>460</td>
<td>13</td>
<td>2.8%</td>
</tr>
<tr>
<td>Deafness and Communication</td>
<td>404</td>
<td>405</td>
<td>416</td>
<td>11</td>
<td>2.7%</td>
</tr>
<tr>
<td>Dental Research</td>
<td>398</td>
<td>398</td>
<td>407</td>
<td>9</td>
<td>2.3%</td>
</tr>
<tr>
<td>National Library of Medicine</td>
<td>337</td>
<td>337</td>
<td>394</td>
<td>57</td>
<td>16.8%</td>
</tr>
<tr>
<td>Biomed / Bioengineering</td>
<td>327</td>
<td>327</td>
<td>337</td>
<td>10</td>
<td>3.1%</td>
</tr>
<tr>
<td>Minority Health / Disparities</td>
<td>258</td>
<td>271</td>
<td>282</td>
<td>11</td>
<td>3.9%</td>
</tr>
<tr>
<td>Nursing Research</td>
<td>141</td>
<td>141</td>
<td>145</td>
<td>4</td>
<td>2.6%</td>
</tr>
<tr>
<td>Complementary and Int Health</td>
<td>124</td>
<td>124</td>
<td>128</td>
<td>3</td>
<td>2.8%</td>
</tr>
<tr>
<td>Buildings and Facilities</td>
<td>128</td>
<td>129</td>
<td>129</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Fogarty International Center</td>
<td>68</td>
<td>68</td>
<td>70</td>
<td>2</td>
<td>2.8%</td>
</tr>
<tr>
<td>Total NIH Program Level</td>
<td>30,070</td>
<td>30,311</td>
<td>31,311</td>
<td>1,000</td>
<td>3.3%</td>
</tr>
<tr>
<td>NLM Program Evaluation Funds</td>
<td>-8</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training & Overhead</td>
<td>-803</td>
<td>-1,282</td>
<td>-1,666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total NIH R&D</td>
<td>29,267</td>
<td>29,029</td>
<td>29,646</td>
<td>616</td>
<td>2.1%</td>
</tr>
<tr>
<td>Conduct of R&D</td>
<td>29,131</td>
<td>28,892</td>
<td>29,500</td>
<td>608</td>
<td>2.1%</td>
</tr>
<tr>
<td>R&D Facilities & Equipment</td>
<td>136</td>
<td>137</td>
<td>145</td>
<td>8</td>
<td>5.8%</td>
</tr>
</tbody>
</table>

Source: OMB R&D data, agency budget justification, and agency budget documents.
All figures rounded to the nearest million. Changes calculated from unrounded figures.
1/ Includes up to $150 million each year in mandatory diabetes research funds.
2/ Trans-NIH initiatives are consolidated in OD.
3/ Transfers from the Dept of the Interior.
NIH Director - Francis Collins

• Research directions set by Director – **not** Congress or President
• Tension between investigator-initiated and ‘big science’
Broad Scientific Areas of Interest to NIH

• Research of direct or strong indirect relevance to understanding and preventing disease

• Research on basic biological and psychological processes of potential interest *if* there is disease relevance
Challenge of Rising U.S. Health Expenditures

Biomedical Research Must Deliver

National Health Expenditures as a Percent of GDP

- Actual
- Projected

$4.1 trillion
FY 2016 Increase Highlights

- $2 billion increase
- Allows highest level of new and competing Research Project Grants since FY 2003 (10,753)
- Precision Medicine Initiative $200 M
 - Cohort 130 M
 - Cancer 70 M
- Antimicrobial Resistance 100 M
- BRAIN Initiative 85 M
- Alzheimer’s Disease 350 M
White House Precision Medicine Initiative

- Announced in SOTU address
- Provide clinicians with new tools, knowledge & therapies to select which treatments work best for which patients
- $200 million investment
- NIH director Collins and NCI director Varmus describe potential of precision medicine initiative in *NEJM* (http://bit.ly/1AjAn1I)
Assembling the PMI Research Cohort

- One million or more volunteers
 - Broadly reflect the diversity of the U.S. (including all ages, health statuses, areas)
 - Strong focus on underrepresented groups
- Longitudinal cohort with continuing interactions
 - Collect EHR data, provide biospecimen(s) and survey, complete baseline exam
- Two methods of recruitment
 - Direct volunteers
 - Anyone can sign up
 - Healthcare provider organizations (incl. FQHCs)
 - Consider diversity of HPO participants, robustness of EHR, patient follow-up
Scientific Opportunities in U.S. PMI Cohort Program

- Develop quantitative estimates of risk for a range of diseases by integrating environmental exposures and genetic factors
- Identify causes of individual variation in response to commonly used therapeutics (pharmacogenomics)
- Discover biological markers that signal increased or decreased risk of developing common diseases
- Understand and address causes of health disparities
- Use mobile health (mHealth) technologies to correlate activity, physiological measures, environmental exposures with health outcomes
- Develop new disease classifications and relationships
- Empower study participants with data and information to improve their own health
- Create platform to enable trials of targeted therapies
NIH BRAIN Initiative

• Launched with $100 M in FY14 budget - funded by NIH, DARPA, NSF

• Private Sector Partners
 - Allen Institute for Brain Science
 - Howard Hughes Medical Institute
 - Kavli Foundation
 - Salk Institute for Biological Studies

• Strong academic leadership from high-level working group: co-chairs, C. Bargmann & W. Newsome
 - Define detailed scientific goals
 - Develop multi-year scientific plan - timetables, milestones & cost estimates

• http://www.nih.gov/science/brain/
Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative®

- Expand efforts to address fundamental neuroscience questions
- Increase investment to support groundbreaking neuroscience research, neuroimaging, training
- Explore collaborations with industry to develop/test devices for mapping/tuning brain circuitry
FY 2017 Request:
Targeted Increases – from Mandatory Funds*

- National Cancer Moonshot $680 M
- Precision Medicine Initiative Cohort 100 M
- BRAIN Initiative 45 M

*Remainder of NIH budget request is at the same overall program level as FY 2016, but $1 billion of that is from mandatory funds ($1.825 billion increase).
National Cancer Moonshot

- Multi-year cancer initiative, led by the Vice President
- Will accelerate research on new approaches for cancer prevention, screening, diagnosis, treatment
 - Cancer Vaccines
 - Early Cancer Detection
 - Single-Cell Genomic Analysis
 - Cancer Immunotherapy
 - Pediatric Cancer
 - Data Sharing
 - Exceptional Opportunities Fund
FY 2017 NIH Budget
$33.1 Billion – Estimated Percent Total by Mechanism

- Research Project Grants: 54.9%
- Intramural Research: 10.9%
- Research & Development Contracts: 9.6%
- Research Training: 2.6%
- Research Management and Support: 5.2%
- Other Research, Superfund, Office of the Director: 8.5%
- Facilities Construction: 0.5%
- Research Centers: 7.8%
NIH Grants & Contracts
Solicited Applications

- Request For Applications (RFA)
 - Set-aside $$
 - Special review
 - Special deadline

- Program Announcements (PA)
 - Typically no set-aside
 - Typically regular receipt dates apply
 - Typically review is by standing committees
 - PAS: $$ for some grants above payline
 - PAR: specific review

- Cooperative Agreements (U’s)
 - “Significant government participation”
 - Clinical Trials, Translational grants

- Request for Proposals (RFP)
 - Contract solicitation
 - Acquisition; gov’t buys a product
Funding Opportunities and Notices

The NIH Guide for Grants and Contracts is the official publication for NIH medical and behavioral research grant policies, guidelines and funding opportunities. Definitions and More Information...

Search the NIH Guide for:
- Active RFAs (Requests for Applications)
- Active PAs (Program Announcements)
- Recent Notices (Released in last 12 Months)
- Inactive & Active Announcements (use Advanced Search)

With Announcement # or Keywords: (Optional) Advanced Search

Browse Active Funding Opportunities
- Requests for Applications (RFAs)
- Program Announcements (PAs)
- Parent Announcements (unsolicited applications)

Browse Recent Policies and Guidelines
- Notices (Released in last 12 months)

Recovery Act Funding
- Current NIH Funding Opportunities and Notices
- Grant Funding Opportunities Web Page

NIH Guide for Grants and Contracts Updates
- New Announcements This Week - Current Weekly Table of Contents (TOC)
- Subscribe or Unsubscribe to Weekly Update via E-mail LISTSERV
- RSS Format - NIH Funding Opportunities now available in RSS (Really Simple News Syndication) format.
- Follow NIH Funding Opportunities on Twitter

Other Funding Opportunities and Notices Listings
NIH Grants and Contracts
Unsolicited Applications

- Traditional “bread & butter” NIH grant support
- Regular receipt deadlines
- Review by pre-existing (“standing”) review committees (typically CSR)
- Increased likelihood of success if fits in with Institute priorities
- NIH permission needed if budget exceeds $500K in any one year
R01 Review and Award Cycles

<table>
<thead>
<tr>
<th></th>
<th>Cycle I</th>
<th>Cycle II</th>
<th>Cycle III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receipt Date</td>
<td>February 5</td>
<td>June 5</td>
<td>October 5</td>
</tr>
<tr>
<td>Scientific Merit Review</td>
<td>June - July</td>
<td>October - November</td>
<td>February - March</td>
</tr>
<tr>
<td>Advisory Council Review</td>
<td>September - October</td>
<td>January - February</td>
<td>May - June</td>
</tr>
<tr>
<td>Earliest Project Start Date</td>
<td>December</td>
<td>April</td>
<td>July</td>
</tr>
</tbody>
</table>
Submitting an Unsolicited Grant Application

- Assignment to Institute for funding consideration
- Assignment to particular review committee
Managing the Process

• Receipt and Referral
 - All NIH grant applications sent to CSR
 - CSR assigns them to Institutes and peer review committees
 - Based on “referral guidelines” &/or PI request in a cover letter
 &/or an ARA from Program staff

• You can request which Institute & program you want to be assigned for funding consideration
 - Letter to CSR; contact with Program official

• You can request which committee you want to conduct the peer review
 - Letter to CSR; contact with Program official
Popular Grant Mechanisms

- **Fellowship Programs**
 - F31: Predoctoral Individual National Research Service Award
 - F32: Postdoctoral Individual National Research Service Award

- **Research Career Programs**
 - K01/K02: Research Scientist Development Awards
 - K05: Research Scientist Award
 - K07: Academic/Teacher Award
 - K08: Clinical Investigator Award
 - K12: Physician Scientist Award
 - K18: Career Enhancement Award
 - K20/K21: Senior Development Awards
 - K22: Career Transition Award
 - K23: Mentored Patient-Oriented Research Career Development Award
 - K24: Midcareer Investigator Award in Patient-Oriented Research
NIH Career Development Awards

- Grant to do research on small scale and obtain training in scientific area
- Mentored v. nonmentored awards
- Basic v. clinical research
- Traditionally easier to get than traditional Research Project (R01) award BUT...
 - http://grants1.nih.gov/training/careerdevelopmentawards.htm
NIH Grant Mechanism Timetable

<table>
<thead>
<tr>
<th>Approx. Stage of Research Training and Development</th>
<th>Mechanism of Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRADUATE/MEDICAL STUDENT</td>
<td>Predoctoral Institutional Training Grant (T32)</td>
</tr>
<tr>
<td>POST DOCTORAL</td>
<td>Predoctoral Individual NRSA (F31)</td>
</tr>
<tr>
<td></td>
<td>Predoctoral Individual MD/PhD NRSA (F30)</td>
</tr>
<tr>
<td>EARLY</td>
<td>Postdoctoral Institutional Training Grant (T32)</td>
</tr>
<tr>
<td></td>
<td>Postdoctoral Individual NRSA (F32)</td>
</tr>
<tr>
<td>MIDDLE</td>
<td>Mentored Research Scientist Development Award (K01)</td>
</tr>
<tr>
<td></td>
<td>Mentored Clinical Scientist Development Award (K08)</td>
</tr>
<tr>
<td></td>
<td>Mentored Patient-Oriented RCDA (K23)</td>
</tr>
<tr>
<td></td>
<td>Mentored Quantitative RCDA (K25)</td>
</tr>
<tr>
<td>SENIOR</td>
<td>Independent Scientist Award (K02)</td>
</tr>
<tr>
<td></td>
<td>Midcareer Investigator Award in Patient-Oriented Research (K24)</td>
</tr>
<tr>
<td></td>
<td>Senior Scientist Award (K05)</td>
</tr>
</tbody>
</table>
Grant Mechanisms

- **Research Program Projects & Centers**
 - P01: Research Program Projects
 - P20: Exploratory Grants
 - P30: Center Core Grant
 - P50: Specialized Center

- **Research Projects**
 - R01: Research Project
 - R03: Small Research Grant
 - R21: Exploratory/Developmental Grants
 - R41/R42: Small Business Technology Transfer (STTR) Grants
 - R43/R44: Small Business Innovation Research Grants (SBIR)
NIH Research Projects

• **R01 grants:** Unsolicited (investigator-initiated) grants from one or more labs
 – Cornerstone of NIH funding
 – Reflect scientists’ interests, assessment of the field, and feasibility

• **R03 grants:** Small, self-contained research projects; feasibility

• **R21 grants:** High-risk / high-return
 – Time and dollar limits; Institutes differ
 – Less stringent need for preliminary data

• **R41/R42, R43/R44 grants:** Small businesses
 – SBIR: small business, commercialization
 – STTR: same, with a university component
 – Phases (1, 2, fast-track)
How Does an Application Get Funded?

- Application submitted to CSR
 - Regular receipt date (unsolicited apps)
 - “Special” receipt date (solicited apps)
- Application assigned to Institute for funding consideration
- Application assigned to peer review committee
- Multiple levels of review
- Grants Management Office of Institute collects necessary information
Multiple Levels of Evaluation

• **Peer review, scientific review committee**
 – Members drawn from extramural scientific community
 – Major effect on probability of being funded

• **Approval of review, Scientific Advisory Council**
 – Each institute has its own Council
 – Members drawn from extramural scientific community
 – Nonscientific members
 – Typically, minimal effect on probability of being funded

• **Program evaluation**
 – Evaluation for agreement with Institute priorities
 – Greatest effect on probability of being funded
National Institutes of Health

- Assigns to IRG/Study Section & IC
- Study Section
 - Evaluates for Scientific Merit
- Institute
 - Evaluates for Program Relevance
- Advisory Councils and Boards
 - Recommends Action
- Institute Director
 - Takes final action for NIH Director
NIH Research Plan

✦ Specific Aims – 1 page
✦ Research Strategy - 12 pages
 – Significance
 – Innovation
 – Approach
 – Preliminary Studies (New Applications) or
 – Progress Report (Renewal/Revision Applications)
Specific NIH Review Criteria

• **Overall Impact** - After considering all of the review criteria, briefly summarize the significant strengths and weaknesses of the application and state the likelihood of the project to exert a sustained powerful influence on the field.

• **Significance** - Does the project address an important problem or a critical barrier to progress in the field? If the aims of the project are achieved, how will scientific knowledge, technical capability, and/or clinical practice be improved? How will successful completion of the aims change the concepts, methods, technologies, treatments, services, or preventative interventions that drive this field?

• **Investigators** - Are the PD/PIs, collaborators, and other researchers well suited to the project? If Early Stage Investigators or New Investigators, do they have appropriate experience and training? If established, have they demonstrated an ongoing record of accomplishments that have advanced their field(s)? If the project is collaborative or multi-PD/PI, do the investigators have complementary and integrated expertise; are their leadership approach, governance and organizational structure appropriate for the project.
Specific NIH Review Criteria

• **Innovation** - Does the application challenge and seek to shift current research or clinical practice paradigms by utilizing novel theoretical concepts, approaches or methodologies, instrumentation, or interventions? Are the concepts, approaches or methodologies, instrumentation, or interventions novel to one field of research or novel in a broad sense? Is a refinement, improvement, or new application of theoretical concepts, approaches or methodologies, instrumentation, or interventions proposed?

• **Approach** - Are the overall strategy, methodology, and analyses well-reasoned and appropriate to accomplish the specific aims of the project? Are potential problems, alternative strategies, and benchmarks for success presented? If the project is in the early stages of development, will the strategy establish feasibility and will particularly risky aspects be managed?

• **Environment** - Will the scientific environment in which the work will be done contribute to the probability of success? Are the institutional support, equipment and other physical resources available to the investigators adequate for the project proposed? Will the project benefit from unique features of the scientific environment, subject populations, or collaborative arrangements?
Other Review Considerations

- Protection for Human Subjects
- Inclusion of Women, Minorities & Children
- Vertebrate Animals
- Biohazards
- Budget & Period Support
- Resource Sharing Plans
Additional Considerations

- **New Investigator**: An NIH research grant Program Director/Principal Investigator (PD/PI) who has not yet competed successfully for a substantial, competing NIH research grant is considered a New Investigator. For example, a PD/PI who has previously received a competing NIH R01 research grant is no longer considered a New Investigator. However, a PD/PI who has received a Small Grant (R03) or an Exploratory/Developmental Research Grant Award (R21) retains his or her status as a New Investigator. A complete definition of a New Investigator along with a list of NIH grants that do not disqualify a PD/PI from being considered a New Investigator can be found at http://grants1.nih.gov/grants/new_investigators/resources.htm.

- **Early Stage Investigator (ESI)**: An individual who is classified as a New or First-Time Investigator and is within 10 years of completing his/her terminal research degree or is within 10 years of completing medical residency (or the equivalent) is considered an Early Stage Investigator (ESI). The 10 year period after completion of the terminal degree or residency may be extended to accommodate special circumstances including various medical concerns, disability, pressing family care responsibilities, or active duty military service. If an extension has been approved, the SRO will bring this to the reviewers’ attention.
Ranking and Priority Scores

- 2-3 assigned reviewers discuss a grant, and may be the only ones who read it
 - The primary reviewer by far has the greatest impact on the score!
 - All reviewers (~30) vote on all grants, based on discussion at the meeting
 - If it’s not in the research strategy, they don’t have to read it (appendices, and last minute data)

- Grants are scored from 1 (exceptional) - 9 (poor) for the overall impact/priority score as well as the individual review criteria. Ratings are provided only in whole numbers, not decimals

- Applications judged unanimously by the peer reviewers as less competitive, based on preliminary impact/priority scores (roughly the bottom half of applications for that review meeting), will not be discussed and will not receive a final impact/priority score.
NIH Grant Application Scoring System

<table>
<thead>
<tr>
<th>Impact</th>
<th>Score</th>
<th>Descriptor</th>
<th>Additional Guidance on Strengths/Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>1</td>
<td>Exceptional</td>
<td>Exceptionally strong with essentially no weaknesses</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Outstanding</td>
<td>Extremely strong with negligible weaknesses</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Excellent</td>
<td>Very strong with only some minor weaknesses</td>
</tr>
<tr>
<td>Medium</td>
<td>4</td>
<td>Very Good</td>
<td>Strong but with numerous minor weaknesses</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Good</td>
<td>Strong but with at least one moderate weakness</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Satisfactory</td>
<td>Some strengths but also some moderate weaknesses</td>
</tr>
<tr>
<td>Low</td>
<td>7</td>
<td>Fair</td>
<td>Some strengths but with at least one major weakness</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Marginal</td>
<td>A few strengths and a few major weaknesses</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Poor</td>
<td>Very few strengths and numerous major weaknesses</td>
</tr>
</tbody>
</table>

Non-numeric score options: NR = Not Recommended for Further Consideration, DF = Deferred, AB = Abstention, CF = Conflict, NP = Not Present, ND = Not Discussed

Minor Weakness: An easily addressable weakness that does not substantially lessen impact
Moderate Weakness: A weakness that lessens impact
Major Weakness: A weakness that severely limits impact
A Few Last Points on Review

• Program staff can attend reviews, but can’t influence reviewers

• You will be sent a score and percentile after review; SROs release summary statements in 4-6 wks
 – (They are NOT available to Program till then, either)
 – USE https://commons.era.nih.gov/commons/ !!

• You can request (with good reason) that someone not review your grant, but can’t suggest reviewers
Percentage of NIH R01 Principal Investigators Age 36 and Younger and Age 66 and Older (Fiscal Years 1980 to 2010)
Average NIH Grant Size
Success Rates for New (Type 1) Applications
NIH Competing Awards
Advice: Writing the Proposal

• Abstract and Specific Aims: clearly state what you propose to do - why and how, *without* distracting detail
• State hypotheses clearly and design clear answers from your experiments
 - Address interesting and significant issues
 - Make the design win-win by assuming the worst
 - Develop alternative strategies for potential problems
• Preliminary Data: prove you can do the work, analyze the results, and draw sound conclusions
• *Avoid being overly ambitious*
Advice: Writing the Proposal

• Make it easy for the primary reviewer
 - S/he will present your case
 - Clear significance, fair literature review
 - Clear and sound hypotheses
 - Demonstrate productivity and feasibility
 - Logical experimental design
 - Avoid Aims that may make next step impossible
 - Don’t assume they know what you mean, *tell them*
 - *Make it “sexy”*
 - Present it in readable, attractive format
 • Spell check; avoid too many acronyms
Helpful Websites

- http://www.usc.edu/research/for_researchers/funding/federal/
- NIH - www.nih.gov
- NIH peer review
 - www.csr.nih.gov/review/peerrev.htm
 - www.csr.nih.gov/review/irgdesc.htm
- NIH Guide for Grants & Contracts
 - grants.nih.gov/grants/guide/index.html
More Helpful Websites

http://grants2.nih.gov/grants/grant_tips.htm
http://www.niaid.nih.gov/ncn/grants/
http://www.nigms.nih.gov/funding/tips.html
http://www.nigms.nih.gov/funding/moregrant_tips.html
http://deainfo.nci.nih.gov/EXTRA/EXTDOCS/gntapp.htm
http://12.46.245.173/cfda/cfda.html
http://cpmcnet.columbia.edu/research/writing.htm
Building Key Relationships

• Critical difference between program and review staff [firewall between them]
 - Program staff make funding decisions
 • Former scientists, specific areas of expertise
 • Based at individual Institutes
 • Take Institute priorities, review scores into account
 • Attend review meetings
 - Review staff: Scientific Review Administrators (SRAs)
 • Former scientists who coordinate study sections at CSR or within Institutes
 • Oversee standing review committees or special emphasis panels (SEPs)
 • Based at CSR or individual Institutes
Advocacy Tips

• Make sure there is close match between your research & institute priorities
• Work with Program Staff early
 - Find a ‘champion’
 - ‘Light touch’ - avoid at all costs pressure, manipulation, shameless self-promotion
 - Identify right person
 - Respect hierarchy
 - Get advice
 - Build enthusiasm – enlist him/her as your advocate
 - Send papers, data
Summary

• NIH is ‘crown jewel’ of fed R&D agencies
• Institute R&D priorities matter!
• NIH director has influence but institute priorities & programs persist for years
• Find homes for your research - both review & funding ('champion')
• Write best proposal you can – tightly focused, “sexy,” with “A-List” personnel
• Be patient and tenacious
Additional questions, advice:
Dr. Steven Moldin
moldin@usc.edu
202-824-5860